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ABSTRACT  

An effective technique for real-time differential orbit 
determination of two low Earth orbiters with GPS bias 
fixing is formulated. With this technique, only moderate-
quality GPS orbit and clock states (e.g., as available in 
real-time from the NASA Global Differential GPS 
System with 10–20 cm accuracy) are needed to seed the 
process. The onboard, real-time orbital states of user 
satellites (few meters in accuracy) are used for orbit 
initialization and integration. An extended Kalman filter 
is constructed for the estimation of the differential orbit 
between the two satellites as well as a reference orbit, 
together with their associating dynamics parameters. The 
technique assumes that the two satellites are separated by 
a moderately long baseline (hundreds of km or less), and 
that they are of roughly similar shape. The differential 
dynamics, therefore, can be tightly constrained, 
strengthening the orbit determination. Without explicit 

differencing of GPS data, double-differenced phase biases 
are formed by a special transformation matrix. Integer-
valued fixing of these biases is then performed, greatly 
improving the orbit estimation. A 9-day demonstration 
with the two GRACE spacecraft (with baselines of ~200 
km) indicates that ~80% of the double-differenced phase 
biases can be successfully fixed, and the differential orbit 
can be determined to ~7 mm 1D RMS as compared to 
direct measurements of the micron-precision, onboard K-
band ranging sub-system. 

INTRODUCTION  

Constellations of Earth orbiting satellites are of increasing 
interest in earth science observation and military 
applications. Two or more relatively small satellites flying 
in formation provide a low-cost substitute for single large 
satellite, with enhanced flexibility and redundancy. 

Among the key issues with formation flying is the 
knowledge of the relative position between the satellites. 
Although precise relative orbits are required only after the 
fact under most civil applications, some missions will 
benefit from real-time (or near real-time) precise orbits. 
Examples of such missions include bi-static radar, virtual 
antennae in space, and space-based radar constellations. 
These missions require real-time knowledge of baselines 
between two or more spacecraft either for precise 
formation control or for onboard science processing and 
data compression. 

Since the inception of the U.S. Global Positioning System 
(GPS), applications to orbit determination of low earth 
orbiters (LEO’s) have been investigated and 
demonstrated. GPS based orbit accuracy has been steadily 
improving, from several cm with Topex/Poseidon [1] to 
the 1-2 cm with GRACE  [2] and sub-centimeter for Jason 
[3]. Such accuracies have been obtained with precision 
GPS receivers tracking dual-frequency (for the removal of 
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ionosphere effects) GPS pseudorange and carrier phase 
measurements, using ground-based post-processing 
software. 

GPS carrier phase is a precise measurement of the sum of 
the clock offset and the distance between the transmitter 
(GPS) and the receiver (user). However, the measurement 
only accounts for the continuous change in phase, lacking 
a knowledge of its absolute value. Each set of continuous 
phase measurements has a constant bias over the entire 
continuous pass for the transmitter-receiver pair. In 
applications using carrier phases, such unknown biases 
have to be estimated as real numbers together with other 
parameters, thus weakening the data strength and limiting 
the ultimate GPS positioning accuracy. Integer-valued 
determination of the number of wavelengths in the phase 
biases (also known as resolving phase ambiguities, or 
bias-fixing) has long been attempted and has 
demonstrated to greatly strengthen ground positioning 
accuracy with GPS. A review of many researchers’ works 
in this respect has been reported in  [4].  

An application of GPS phase bias fixing to differential 
orbit determination has been demonstrated to millimeter 
accuracy [5] between the two earth orbiting satellites of 
GRACE, separated by ~200 kilometers. The technique 
requires predetermination of the GRACE orbits to ~2 cm 
accuracy, and the GPS orbits to ~5 cm accuracy. In real-
time applications, such high-accuracy predetermined 
orbits are not available and bias fixing has been rendered 
difficult, if not impossible. The current accuracy of real-
time differential orbit determination between LEO’s is of 
the order of several centimeters [6,7]. 

This paper reports an effective technique for real-time 
differential orbit determination with GPS bias fixing. 
With this technique, only moderate-quality GPS orbits 
and clocks are needed (as available in real-time from the 
NASA Global Differential GPS System with 10–20 cm 
accuracy). For short baselines (< 100 km) a lower quality 
GPS orbit and clock states can be used, such as the 
broadcast ephemeris. The LEO onboard, real-time orbital 
states (up to few meters in accuracy) are used for orbit 
initialization and integration. Taking advantage of the 
close proximity of the two satellites, and of similar body 
shapes, differential dynamics between the two LEO’s can 
be tightly constrained and the orbit estimation 
strengthened. An extended Kalman filter is constructed 
for the estimation of the differential orbit between the two 
satellites as well as a reference orbit, together with their 
associating dynamics parameters. Without explicit 
differencing of GPS data, double-differenced phase biases 
are formed by a transformation matrix. Integer-valued 
fixing of these biases are then performed which greatly 
strengthens the orbit estimation.  

The technique is demonstrated with the GRACE orbits 
over a 9-day period in August, 2004. During this period 
the baseline between the two LEO’s is ~200 km in length. 
The “length” component of the 3-dimensional baseline 
vector solution is compared with the precise K-band dual 
one-way ranging between the satellites, which is accurate 
to the microns level except for an unknown bias. The 
length agreement has an RMS value of ~7 mm over the 9-
day period. It improves to ~4 mm when the baseline 
becomes shorter (35 to 65 km) during an orbit switchover 
operation in December 2005.  In addition, the percentage 
of successfully fixed double-differenced phase biases can 
serve as a qualitative measure of the filtering process. A 
high success rate of ~80% is demonstrated. 

THE LAMBDA METHOD FOR BIAS FIXING 

Carrier phase biases are in general estimated (together 
with other parameters) as real (floating-point) valued 
parameters. Due to instrument delays in the transmitters 
and receivers, the biases are not integers in nature. Such 
unknown delays cancel out upon double differencing 
between two transmitters and two receivers, allowing 
integer-valued fixing of phase biases (or resolving of 
phase ambiguities). 

One of the difficulties in resolving phase ambiguities is 
that the floating-point solutions of phase biases are 
mutually correlated in general. As a consequence of such 
correlation, the search space for correct integers is large, 
with low confidence in fixing. De-correlating these 
floating-point bias solutions would allow sequential 
conditional search for correct integers. This has become 
the key issue in bias fixing and the vast research in this 
area has led to various de-correlation techniques [4]. In 
this paper, a method pioneered by Teunissen [8], the 
LAMBDA (Least-squares AMBiguity Decorrelation 
Adjustment) method, is adopted for de-correlating the 
floating-point solutions of double-differenced phase 
biases and subsequently fixing them. 

VALIDATION OF INTEGER-VALUE FIXED 
BIASES 

An incorrectly fixed bias would result in erroneous orbit 
determination in a way more damaging to orbit 
determination than the un-fixed bias. Therefore, prior to 
incorporating into the orbit solution, each of the fixed 
biases needs to be validated. In the following, two 
validation tests will be carried out, the wide-lane bias test 
and the ionosphere-free bias test. 

Let Δ1 and Δ2 be the differences between the fixed 
integer-valued solution of L1 and L2 biases, respectively, 
from their real-valued solutions. Then the wide-lane bias 
test is 
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where f1 and f2 are the frequencies of L1 and L2 signals, 
and λ1 and λ2 their corresponding wavelengths. 

A trial and error approach has led to the choice α = 0.2 
cycle and β = 1 cm. 

Aside from these two tests, bias fixing is not attempted 
when the formal error of the differential position estimate 
is higher than a threshold of 2 cm in any component. 

DOUBLE-DIFFERECED PHASE BIASES 

As mentioned above, only double-differenced phase 
biases are integer in nature and can be candidates for 
being fixed. Explicitly double differencing GPS 
measurements would of course result in double-
differenced biases but is undesirable for two reasons. 
Firstly, The measurements now involves 2 transmitters 
and 2 receivers and the measurement partial derivatives 
become more complicated. Secondly, double-differenced 
GPS measurements are no longer uncorrelated and cannot 
be properly weighted without a complex weighting 
matrix. 

We adopt here a UD-formulated sequential filtering 
process [9] on un-differenced GPS measurements. All 
measurements at a given epoch are processed as usual for 
the estimation of un-differenced phase biases and other 
parameters. The UD array (which contains the 
information of the estimates and their covariances) 
associated with the bias parameters is transformed into a 
UD array for double-differenced biases through a special 
mapping. It is a rectangular matrix of dimension N (rows) 
by M (columns), where M and N are the number of un-
differenced and double-differenced biases, respectively. 
All but four elements in each row of the mapping matrix 
are 0, with the only non-zero elements of values 1, -1, -1 
and 1. The matrix is formed one row at a time with an 
exhaustive search of non-redundant double-differenced 
combinations. This matrix effectively converts un-
differenced biases to double-differenced biases. The GPS 
measurements remain undifferenced, uncorrelated and 
with simple partial derivatives with respect to estimated 
parameters. 

UD UPDATE WITH FIXED BIASES 

A unique property of a UD array (each row of which 
corresponds to an estimated parameter) is that any new 
information update of the parameters located at the lower 

part of the array will not affect the upper part of the array. 
With this property in mind, it is efficient to put the phase 
biases at the end of the estimated parameter list; its 
associated UD array will then reside at the bottom. With 
such arrangement, only the bottom part of the UD array 
will need to be transformed into that of double-
differenced biases and to be updated with any 
subsequently fixed biases. The upper part of the UD array 
will remain unchanged by such transformation and 
updating. 

The LAMBDA bias fixing algorithm is carried out on the 
transformed UD array to search for any fixable double-
differenced biases. In general, only a subset of all the 
biases will get fixed to the correct integers with properly 
pre-specified confidence criteria. With each of the 
confidently fixed double-differenced biases, the original 
(un-transformed) UD array containing the un-differenced 
biases is updated by a pseudo-measurement defined by a 
single-row matrix equation. The left-hand side of this 
equation is a 1×M matrix with elements identical to the 
row of the transformation matrix forming that particular 
double-differenced bias. The right-hand side is the 
LAMBDA fixed integer value of the double-differenced 
bias. A large data weight of 106 cycle–1, is assigned to 
reflect the error-free estimate of the fixed bias. 

DIFFERENTIAL ORBIT AND DYNAMICS 

Precise modeling of the dynamics controlling low earth 
orbiters is by no means a trivial task. Purely dynamic 
orbit determination of orbiters  at ~400 km altitudes over 
a 24-hour period is limited to the decimeter level. For 
applications requiring higher orbit accuracy, a reduced-
dynamic filtering scheme [10] is required. With this 
filtering scheme, empirical forces in all 3 directions are 
modeled as constrained process noise and estimated. The 
level of mismodeling of the overall dynamics dictates the 
level of the applied constraints. For a pair of neighboring 
satellites with similar body shape and flying along nearly 
the same path, the dynamics are highly common and the 
differential mismodeling of the dynamics is expected to 
be far lower than the mismodeling of the individual 
satellite’s dynamics. Hence, the constraint on the process 
noise for differential dynamics can be greatly tightened 
and, consequently, the solution strengthened. 

To exploit the high commonality of the differential 
dynamics we estimate the differential orbit instead of the 
individual orbits. In addition, a reference orbit (which is 
one of the individual orbits) needs to be estimated to 
avoid having both orbits drifts away over time.   

Let a and b be the state vectors (3-d positions, velocities 
and dynamics parameters to be estimated) of the 
individual orbits A and B, respectively. Also, let u and v 
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be the state vectors of the differential orbit and of the 
reference orbit, respectively. In other words, 

 u = a − b 

 v = b 

Using the chain rule, the measurement partial derivatives 
wrt. the orbital states, u and v, can be expressed in terms 
of those wrt. each individual orbital states, a and b, as, 

 ∂M / ∂u = ∂M / ∂a 

 ∂M / ∂v = ∂M / ∂a + ∂M / ∂b 

where M denotes a GPS measurement, either pseudorange 
or carrier phase. 

The matrices of variational partial derivatives mapping 
the state vectors of the individual orbits between two time 
points, 1 and 2, are generated by integrations of the orbit 
dynamics. Let these matrices be ∂A2 / ∂A1 and ∂B2 / ∂B1, 
with the corresponding mapping equation 
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Then, using the chain rule, the matrix of variational 
partial derivatives mapping the state vectors of the 
differential orbit and the reference orbit can be derived. 
The resulting mapping equation is 
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Integrations of orbits are performed on each individual 
satellites. After processing GPS measurements and any 
possible bias fixing at each epoch, the part of the UD 
array associating with the state vectors u and v is mapped 
to the next epoch using the above mapping equation. 

ESTIMATION PROCESS 

This section outlines the overall estimation process for the 
differential orbit determination. 

In addition to the state vectors u and v and GPS phase 
biases several other parameters must be estimated to 
assure precise orbit determination, as is discussed below. 

The effects of ionosphere delays, if not properly removed, 
can be a limiting factor on precise orbit determination. In 
most GPS applications, measurements at two frequencies 
are combined to remove the ionosphere delay. However, 
such combination would destroy the integer nature of 

double-differenced phase biases and should be avoided. 
To facilitate bias fixing, un-combined GPS measurements 
at both L1 and L2 frequencies should be used. The effects 
of the ionosphere are removed by estimating line-of-sight 
delays at each epoch. These ionosphere delays are treated 
as white noise from one time to another and uncorrelated 
between observing links. The proper inversed-frequency-
squared scaling between L1 and L2 measurements, and 
the negative delay on phase versus positive delays on 
pseudorange, are applied. Hence only single delay is to be 
estimated for each observing link. 

The real-time onboard knowledge of differential clocks 
between the two user satellites is not sufficiently accurate 
for precise differential orbit determination and has to be 
estimated as a loosely constrained parameter. Real-time 
GPS clocks provided by the NASA Global Differential 
GPS System [www.gdgps.net] is of 10–20 cm accuracy. 
Although their effects are less significant, these clocks are 
also estimated as loosely constrained parameters. 

Tables 1 summarizes all the estimated parameters 
associating with the orbital states, with their pre-specified 
constraints. The initial constraint on each process-noise 
empirical force consists of an initial and a steady-state 
constraints, separated by a slash ( / ) in the table. Table 2 
includes all other estimated parameters and the constraints 
to be applied. Fig. 1 describes the flow of the entire 
estimation process. New epochs in the flow are defined by 
GPS data. 

Table 1.  Orbit State Parameters to be Estimated 

  Reference  Differential 
  Orbit Orbit 

 Orbit Position (m) 1 1 
 Orbit Velocity (mm/s) 1 1 
 Solar Radiation Scaling 1 0.1 
 Drag Coefficient 1 0.1 

 Empirical Force, modeled as process noise: 
 Radial (nm/sec2) 30 / 30 0.5 / 0.1 
 Cross-Track (nm/sec2) 30 / 30 1.0 / 0.3 
 In-Track (nm/sec2) 30 / 30 3.0 / 1.0 
 Correlation Time (s) 5400 600 

After the UD array is updated by the successfully fixed 
biases at each epoch, the differential and reference orbit 
state vectors are updated with the adjustment estimate 
(embedded in UD array) before being mapped to the next 
epoch. Such state-vector updates characterize an extended 
Kalman filter and are essential for proper convergence of 
orbit solutions in real-time applications. Lacking such 
state-vector updates, orbit  solutions will converge only 
with precise initialization and dynamics modeling.  
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Table 2.  Other Parameters to be Estimated 

 Differential User Clock 1 m  + 1 cm/s1/2 

 (randomwalk) 

 GPS Clocks 1 m  + 1 cm/(10s)1/2 

 (randomwalk) 

 Ionosphere Delays 100 m  @ 1Ghz 
 (white-noise) 

 Phase Biases (constant 10 km 
 over each continuous link) 

  
With a straightforward implementation, the total number 
of estimated parameters can be large. For instance, with 
30 GPS satellites there will be 30 GPS clocks, 60 
ionosphere delays, 120 phase biases, in addition to 1 for 
the user clock offset and 11 for each of the state vectors of 
the differential and the reference orbits, with a total of 
233. The number can be greatly reduced by removing 
those GPS satellites that are not actually involved at any 
epoch. However, such an epoch-dependent filter size will 
complicate the bookkeeping in modeling the estimated 
parameters. A compromise is adopted instead. Since not 
more than half of the GPS satellites are in view at any 
epoch, we can assume only 15 potentially in-view GPS 
satellites at all epochs. In this way, the total number of 
estimated parameters will be reduced by nearly a factor of 
2 and the processing time for the filtering process will be 
shortened by a factor of nearly 4. At each epoch, a drop-
out GPS satellite will be flagged as inactive; but its 
associating parameters will remain in the estimating list 
until being replaced by those associated with a newly 
acquired GPS satellite. 

DEMONSTRATION WITH GRACE 

To demonstrate the real-time differential orbit 
determination described above, L1 and L2 pseudorange 
and carrier phase data from the two GRACE onboard 
GPS receivers are used. GRACE is a Gravity Recovery 
And Climate Experiment mission involving two satellites 
flying in tandem at a nominal height of 500 km and 
separated by ~200 km. In addition to the onboard GPS 
receivers for cm-level orbit determination, a dual-one-
way K-Band Ranging system (KBR) provides micron-
level inter-satellite distance determination. The KBR 
solution is ideal for certifying the differential orbit 
accuracy with GPS bias fixing. 

The main data set covers the first 9 days of August 2005 
at a data sampling interval of 10 sec. In December 2005 
the two spacecraft switch orbital location, and during this 
maneuver the inter-spacecraft range was reduced to nearly 
zero. We have also processed data from this period of 
time, with baseline length varying from 65 km to 35 km.  

 
Fig. 1.  Flow diagram of estimation process 
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Fig. 2.  Number of L1/L2 pairs of double-differenced 
biases fixed to integer values 

 

Fig. 4.  Differential orbit accuracy (deviation from K-
band dual one-way ranging solution) with different 
weighting on GPS phase data 

 

The GPS data are weighted at 15 cm for pseudorange and 
2 mm for the carrier phase. Also used are the GRACE 
attitude information from the onboard star cameras. The 
real-time solutions of the GPS orbit and clock states were 
provided by the JPL GDGPS system, using the Real Time 
GIPSY (RTG) software. They are accurate to 10-20 cm 
[www.gdgps.net]. Only crude (accurate to a few meters) 
GRACE orbits are needed to initiate the orbit integrations. 
Dynamic models for the integrations include a 200x200 
gravity, atmospheric drag, solar radiation and tides, and 3-
d empirical forces, as described in Table 1. 

RESULTS OF DEMONSTRATION 

Two aspects of the quality of the demonstration results 
are examined. First, the number of L1/L2 pairs of 
successfully fixed double-differenced biases over the 
entire data span provides a qualitative measure of the 
filtering process. Secondly, the ultimate accuracy of the 
resulting differential orbit is assessed by comparing to the 
precise (to the micron level) K-band dual one-way 
ranging solution. A sample 1-day results are shown in 
Figs. 2 and 3. In Fig. 2, the upper frame shows the actual 
number of L1/L2 bias pairs successfully fixed while the 
lower frame the success rate. At the beginning of the day, 
some components of the formal error of the differential 
position estimate are higher than the 2-cm threshold, thus 
no bias fixing is intended. Such initializing period lasts 

for ~20 minutes. Beyond this initializing period, about 
80% of the double-differenced biases are successfully 
fixed. The results for other days are similar. 

In Fig. 3, the quality of the 1-day solution for the 
differential orbit is shown. Here, the deviations of the 
inter-satellite distance solutions, with and without bias 
fixing, from the KBR solution are compared. 

At the beginning of the day when no biases can be fixed, 
the differential orbit solution is worse. After about 20 
minutes when biases are getting fixed, the orbit solutions 
greatly improves and has an RMS value of ~5 mm for the 
remaining of the day. The superiority of the solution over 
that without bias fixing is clearly observed. Although only 
the inter-satellite distance accuracy can be assessed, the 
other two components are likely to be of similar accuracy. 

Fig. 4 compares the daily RMS differential orbit accuracy 
with different weighting on GPS phase data: a nominal 
weight (2 mm), a 1.5 times heavier weight (1.33 mm) and 
a 2 times heavier weight (1 mm), for the entire 9-day 

Fig. 3.  Differential orbit accuracy (deviation from K-
band dual one-way ranging solution) 

 

RMS ~15 mm 
RMS ~ 5 mm 
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period. Pseudorange data is weighted at 15 cm 
throughout. It is observed that the accuracy is not quite 
sensitive to the relative weighting, with the heavier phase 
data weights yielding slightly better solution. The RMS 
orbit accuracy with these heavier weights is ~ 7 mm (1D 
RMS). The ~20-minute initializing period before bias 
fixing gets started at the beginning of each day has been 
excluded. 

Fig. 5 shows the corresponding percentage of biases 
successfully fixed for the cases studied as in Fig. 4. The 
same low sensitivity to relative data weighting is 
observed. The overall average success rate of bias fixing 
is 79% over the 9-day period. 

Over the shorter baselines of December 2005, varying 
from 65 to 35 km, the relative positioning accuracy 
slightly improved to ~4 mm 1 D RMS. A comparison of 
results with different baseline length is as shown in Fig. 6. 
The better accuracy is due partly to better cancellation of 
dynamics and GPS orbit error between the two ends of the 
shorter baseline.  

CONCLUDING REMARKS 

An effective UD formulated estimation technique for 
precise real-time differential orbit determination of 
formation flying low earth satellites has been proposed. 
The high accuracy results from integer-valued fixing of 
GPS carrier phase biases with high success rate. Even 
though it is double-differenced biases that are to be fixed, 
no explicit differencing of GPS data is needed. A 
transformation matrix converts the UD array for un-
differenced biases into that for double-differenced biases. 
The same transformation matrix also serves as the left-
hand side of measurement equations for updating the UD 
array for integer-value fixed double-differenced biases. 

State vectors of the differential LEO orbit and a reference 
orbit, instead of individual LEO orbits, are estimated to 
exploit the high commonality of orbit dynamics. In this  
way the constraints on the estimated dynamic parameters 
can be tightly set so as to strengthen the orbit estimation. 
Measurement partial derivatives with respect to state 
vectors of differential orbit and of reference orbit can be 
easily derived from those of individual orbits with the 
chain rule. So can the matrix of variational partial 
derivatives mapping the state vectors and the associating 
UD array from one epoch to the next. 

 A demonstration has been performed for the two GRACE 
satellites, separated by a distance of ~200 km, over a 9-
day period. The results of this demonstration has shown 
that ~80% of double-differenced biases are successfully 
fixed. The differential orbit accuracy were assessed by 
comparing with the precise (to the micron level) K-band 
dual one-way ranging. The component in the line-of-sight 
direction has a ~7 mm agreement. Though not readily 
comparable, the other components are believed to have 
similar accuracy. Over shorter baselines (35-65 km) the 
accuracy improved to ~4 mm.  

The quality of the real-time GPS orbit and clock states 
becomes less important as the inter-spacecraft baseline 
gets shorter. Over the nominal 200 km  GRACE baseline 
it proved difficult to resolve ambiguities with the 
broadcast ephemeris (~1 m URE), but even without bias-
fixing the relative positioning of the two spacecraft was at 
the few centimeter level. Over shorter baselines it became 
possible to fix the integer ambiguity with the GPS 
broadcast ephemeris, and to obtain sub-cm relative 
positioning. 

Although the estimation technique has been demonstrated 
with an application containing only two satellites, it is 
readily applicable to multi-satellite differential orbit 
determination. The corresponding transformation matrix 
forming double-differenced biases, though more 
complicated, has been implemented. 

Fig. 5.  Daily average percentage of successfully fixed 
biases with different weighting on GPS phase data 

Fig. 6. Better orbit accuracy with shorter baselines 
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